
REST API
Public REST API for accessing the database.

API design
API routes
API implementation
API use cases

API design
Principles of the API design:

1. All documented routes should be appended to https://ddd.cjvt.si/api/.
2. All the routes are available as POST calls, even if they do not result in changes in the

database, because:
some routes will have non-trivial input parameters (structured data, arbitrary
strings), which are difficult and clunky to encode as path parameters, and expecting
request body parameters in GET calls can be problematic and misleading
we can have short clear URLS for all routes, and there are limits on URL length in
some contexts.

3. Some routes also have a GET counterpart, which behave the same way as the POST call
but do not allow for response body parameters (default values are used instead).

4. All request parameters are provided as JSON request body parameters, except for the
object's id, which is used to identify a given object and provided as an obligatory path
parameter for certain types of calls (e.g., retrieve).

5. The following HTTP response codes are used:
200: for most successful requests
201: for successful get-or-create requests where no matching object was found and
a new one was created
400: an error occurred due to invalid or unexpected request parameters or
combinations
401: authorisation denied (suitable credentials are needed for routes which write to
the database)
404: objects were not found for the value (usually id) provided
501: the specifications for this route are designed but it has not yet been
implemented

6. Each route falls under a particular type of operation identified with a particular verb as the
first part of the route. The verbs include:

retrieve: return data for a given object
search: return all the objects which match the set of search parameters
export: return all object ids by minimal filter and with minimal data, using cursor
pagination
get-or-create: get the object matching the parameters provided, creating one if
necessary, along with any other missing objects it depends on
update: update the properties of a given object based on the parameters provided
delete: delete a given object
attach: attach the given object to a particular resource, if not yet attached
detach: detach the given object from a particular resource, if attached
process: process the input data with an appropriate independent tool (e.g., the
CLASSLA NLP library)

7. If the operation verb has a "-batch" suffix, it differs from its non-batch counterpart as
follows:

users can make 1 API call instead of N API calls for N items
the input data should be a list, with each element in the format expected by the non-
batch route
the output data is a list, with each element corresponding to the element at the
same position in the input, where each element has three fields:

status: the HTTP response code that would be used if the element was
processed in a non-batch call
message: a message describing the results of the operation (e.g., whether an
object was found or created, or the cause of the warning or error)
data: the output data (for successful calls), in the same format as non-batch
output

8. Routes which do not change data in the database (retrieve, search, export, process) are
publicly available. Routes which may result in changes in the database (get-or-create,
update, delete, attach, detach) require authentication credentials.

API routes
The API is being designed and developed, with priority on current needs. Specifications are
available in redoc (which is better formatted visually) and swagger (which allows you to try the API
via the interface).

Here is a list of the current routes (last update: 31.03.2025). All routes are available with POST,
while some of them also have GET or batch POST alternatives (ref). The routes that are not read-
only have restricted access.

Route Read-only Description

/search/lexical-unit/ yes search for lexical units based on their
properties and parts

/retrieve/lexical-unit/ yes get a lexical unit's basic data

/get-or-create/lexical-unit/ no get or create a lexical unit based on
properties and components

/export/lexical-unit/ yes get all lexical units by type

/search/lexeme/ yes search for lexemes

/retrieve/lexeme/ yes get a lexeme's data

/get-or-create/lexeme/ no get or create a lexeme based on
defining properties

/export/lexeme/ yes get all lexemes by category

/retrieve/lexical-unit-lexemes/ yes get the lexical unit's component
lexemes

/search/category/ yes search for a lexeme's category (part
of speech) by string

/search/form/ yes search for word forms by string

/search/sense/ yes search for senses

/retrieve/lexical-unit-senses/ yes get the senses of a lexical unit

/retrieve/lexical-unit-definitions/ yes get the sense definitions of a lexical
unit

/retrieve/lexical-unit-sense-relations/ yes get the sense relations of a lexical
unit's senses

/retrieve/lexical-unit-collocations/ yes get the collocations of a lexical unit

https://ddd.cjvt.si/api/redoc
https://ddd.cjvt.si/api/swagger
https://wiki.cjvt.si/books/digital-dictionary-database/page/api-design
https://ddd.cjvt.si/api/redoc/#operation/search_lexical-unit_create
https://ddd.cjvt.si/api/redoc/#operation/retrieve_lexical-unit_create
hhttps://ddd.cjvt.si/api/redoc/#operation/get-or-create_lexical-unit_create
https://ddd.cjvt.si/api/redoc/#tag/export/operation/export_lexical-units_create
https://ddd.cjvt.si/api/redoc/#operation/search_lexeme_create
https://ddd.cjvt.si/api/redoc/#operation/retrieve_lexeme_create
https://ddd.cjvt.si/api/redoc/#operation/get-or-create_lexeme_create
https://ddd.cjvt.si/api/redoc/#tag/export/operation/export_lexemes_create
https://ddd.cjvt.si/api/redoc/#operation/retrieve_lexical-unit-lexemes_create
https://ddd.cjvt.si/api/redoc/#operation/search_category_create
https://ddd.cjvt.si/api/redoc/#operation/search_form_create
https://ddd.cjvt.si/api/redoc/#operation/search_sense_create
https://ddd.cjvt.si/api/redoc/#operation/retrieve_lexical-unit-senses_create
https://ddd.cjvt.si/api/redoc/#tag/retrieve/operation/retrieve_lexical-unit-definitions_create
https://ddd.cjvt.si/api/redoc/#operation/retrieve_lexical-unit-sense-relations_create
https://ddd.cjvt.si/api/redoc/#operation/retrieve_lexical-unit-collocations_create

Route Read-only Description

/retrieve/lexical-unit-translations/ yes get the translations of a lexical unit

/retrieve/lexical-unit-sense-examples/ yes get corpus examples for the senses of
a lexical unit

/export/lexical-unit-sense-examples/ yes get all corpus examples by lexical unit
type

/get-or-create/resource/ no get or create a dictionary or other
resource

/search/resource/ yes search or list resources available

/attach/lexical-unit/ no attach a lexical unit to a resource

/detach/lexical-unit/ no detach a lexical unit from a resource

/search/syntactic-structure/ yes get the XML definitions of syntactic
structures

/process/string-to-tokens/ yes parse a Slovene string to get a list of
tokens

https://ddd.cjvt.si/api/redoc/#operation/retrieve_lexical-unit-translations_create
https://ddd.cjvt.si/api/redoc/#operation/retrieve_lexical-unit-sense-examples_create
https://ddd.cjvt.si/api/redoc/#tag/export/operation/export_lexical-unit-sense-examples_create
https://ddd.cjvt.si/api/redoc/#operation/get-or-create_resource_create
https://ddd.cjvt.si/api/redoc/#operation/search_resource_create
https://ddd.cjvt.si/api/redoc/#operation/attach_lexical-unit_create
https://ddd.cjvt.si/api/redoc/#operation/detach_lexical-unit_create
https://ddd.cjvt.si/api/redoc/#operation/search_syntactic-structure_create
https://ddd.cjvt.si/api/redoc/#operation/process_string-to-tokens_create

API implementation
The public API is being implemented using the Django REST Framework and APIViews in particular.
It is part of the Python codebase, Django project and Git repository that is used to manage the
database in general. We are striving to keep the business logic and API route definitions in
separate modules, so that different APIs (e.g., editor API, internal API) can use the same utils
module.

Most of the logic and processing of the API is internal. However, there are a few aspects that rely
on other tools, such as Slovene string parsing and fetching of corpus examples.

https://www.django-rest-framework.org/
https://www.django-rest-framework.org/api-guide/views/

API use cases
In addition to providing general public access to the database, the REST API can also be used to
integrate data and services with external organisations in a coordinated, structured and systematic
way. Two current examples of this are integration with terminology portals and speech
technologies, both of which use a mix of public (read-only) and restricted (read-write) routes of the
API.

Terminology Portal
One of the main parts of the Development of Slovene in a Digital Environment is a terminology
portal that will feature various terminological resources and offer an openly accessible tool for term
extraction from specialized corpora, as well as the server infrastructure needed to create new
terminological resources. The main components of the portal include a search engine for all
integrated resources and a terminology resource editor, and the resources are designed to be
easily integrated with other language tools and services, including the Digital Dictionary Database.

As such, the portal uses API routes to register its dictionaries in the database, search and create
terms, attach/detach them to/from the dictionaries, and fetch their forms and statuses. The API
supports this as follows (see the route links for full examples):

Register the dictionary as a resource in the database using /get-or-create/resource/,
providing a code name for the dictionary (e.g., "slm") as input. The API will return the
resource's ID (e.g., 87), first creating it if it does not yet exist.
Get IDs of terms in the database, creating them if necessary, using /get-or-create/lexical-
unit/. Input can be either the term's raw string (e.g., "okrogla miza"), or its pre-analysed
sequence of tokens, with each token represented with corpus-style data (e.g.,
[{"lemma":"okrogel", "msd":"Ppnzei", "form":"okrogel"}, {"lemma":"miza", "msd":"Sozei", "form":"miza"}]
). If a raw string is provided, the API uses a standard tool to get a sequence of tokens
itself. Either way, it then checks if a matching lexical unit exists in the database, creates
one if necessary, and returns its basic data, including its ID (e.g., 54321). If many terms
need processing, this can be done by using the /get-or-create-batch/lexical-unit/ call
instead and providing a list of inputs.
Get the word parts and their forms with statuses for a specific term, by using
/retrieve/lexical-unit-lexemes/. Input would be the term's ID (e.g., 54321) and specifying
that form statuses and all form types are also requested (e.g., "extra-data":["status-form-
types", "forms-orthography", "forms-accentuation", "forms-pronunciation"]). The output then a list,
with each element is one of the term's word constituents, represented with both its basic
data (such as id, lemma, part of speech, basic word-level features) and the extra

https://www.slovenscina.eu/
https://blisk.ijs.si/api/redoc/#operation/get-or-create_resource_create
https://blisk.ijs.si/api/redoc/#operation/get-or-create_lexical-unit_create
https://blisk.ijs.si/api/redoc/#operation/get-or-create_lexical-unit_create
https://blisk.ijs.si/api/redoc/#operation/get-or-create-batch_lexical-unit_create
https://blisk.ijs.si/api/redoc/#operation/retrieve_lexical-unit-lexemes_create

requested data (the list of all the forms of all the types for the word and aggregated
statuses for each type).
Search for term candidates in the datases, using /search/lexical-unit/. This has similarities
to /get-or-create/lexical-unit but differs in a few key ways. First, it does not create a lexical
unit if no match exists, and thus does not require authentification, so less central
components of the portal can also make use of it. Second, it does not require complete
data in the input (e.g., perhaps only one or two of lemma/msd/form are specified for one
or more of the term's components), making the search more flexible and potentially
returning multiple matches (e.g., {"lemma":"klop"}).
Attach the lexical unit to a resource, using /attach/lexical-unit/. The input would be the IDs
of the term as a lexical unit (e.g., 54321) and dictionary as a resource (e.g., 87). This
would then connect the two in the database.
Detach the lexical unit from a resource, using /detach/lexical-
unit/(https://blisk.ijs.si/api/redoc/#tag/detach). The input would be the IDs of the term as a
lexical unit (e.g., 54321) and dictionary as a resource (e.g., 87). This would then remove
the term from the resource in the database, without deleting the term from the database
in general.

Speech technologies
The project Tolmač (Eng. Interpreter) is focused on developing of a system for automatically
translating lectures from Slovene to other languages, coordinated at the Faculty of Computer and
Information Science at the University of Ljubljana, in close collaboration with the Centre for
Language Resources and Technologies. The results of the project will be important for a wide range
of people: real-time translations will make it easier for foreign students to follow lectures in
Slovene, automatic subtitles will help people will hearing loss, and lecture excerpts and recordings
will be accessible at a dedicated website. The speech technologies underlying the system rely on
search and retrieval of both orthographic and pronunciation word forms of Slovene words.

To that end, the system can use API routes to preprocess text, search for different kinds of word
forms, retrieve the forms of word and create new words along with their forms. The API supports
this as follows:

Parse a piece of Slovene text to get a sequence of tokens using /process-string-to-tokens.
The API runs the standard CLASSLA parser with default parameters and returns a list of
tokens in CoNLL-U format, with each token including a lemma (e.g., "miza"), MSD (
"Sozmm") and form (e.g., "mizah"). Thus this API call does not interact with the database,
but serves as a handy wrapper for CLASSLA, so the user does not need to install it
themselves.
Search for a word form in the database using /search/form/, by providing a type (e.g.,
"orthography") and a string (e.g., "mizah"). The output is a list of matching forms, along
with basic associated data such as lexeme ID (e.g., 123), lemma (e.g., "miza") and JOS-

https://blisk.ijs.si/api/redoc/#operation/search_lexical-unit_create
https://blisk.ijs.si/api/redoc/#tag/attach
https://www.cjvt.si/en/infrastructure-support/tolmac/
https://blisk.ijs.si/api/redoc/#tag/process
https://github.com/clarinsi/classla
https://blisk.ijs.si/api/redoc/#operation/search_form_create

system MSD (e.g., "Sozdm"). Associated pronunciations for all matching forms are
included if requested (e.g., "extra-data":["forms-pronunciation"]).
Get all the forms of a given lexeme using /retrieve/lexeme/, using the lexeme's ID as
input. To get all the orthography and pronunciation forms of the lexeme, specify in the
input (e.g., "extra-data":["forms-orthography", "forms-pronunciation"]).
Create (if it does not yet exist) a lexeme in the database using /get-or-create/lexeme/.
Input consists of a lemma (e.g., "miza") and MSD (e.g., "Sozmm"). The MSD can be any
appropriate MSD for the lexeme, not necessarily the MSD of the lemma itself, since only
the lexeme-level parts of the lemma (e.g., "Soz") will be considered. The API calls the
Inflector tool, which generates full paradigms of different kinds of forms (orthography,
accentuation, pronunciation), and then saves the new lexeme with its forms in the
database. However, if a lexeme already exists in the database which matches the
database, no duplicate lexeme (along with forms) is created and the existing lexeme is
returned.

Povejmo
One of the goals of the project is to enable a large language model to learn Slovene grammar. The
training dataset will be largely based on data obtained from the Digital Dictionary Database, and
the goal is to extract and incorporate as much data as possible, so that the model can also learn
specific nuances.

To that end, the API's various /export and /retrieve-batch routes are particularly relevant, as they
enable first finding all the relevant (single-word or multi-word) unit IDs and then different kinds of
data for all the words. For example:

Find the IDs of the first chunk of single-word lexical units in the database, using
/export/lexical-units/ with "type"="single_lexeme_unit" .
Accumulate all the IDs by repeatedly following the "next" links until next=null.
Break the lexical unit IDs into batches that can be used in /retrieve-batch calls.
For each batch of lexical unit IDs, retrieve associated data using:

/retrieve-batch/lexical-unit-lexemes/ with "extra-data"=["forms-orthography"] to get each
lexical unit's lexeme along with all of its morphological forms.
/retrieve-batch/lexical-unit-definitions/ to get all definitions of different kinds for the
lexical units' senses.
/retrieve-batch/lexical-unit-sense-relations/ with "type"="synonym" to get all the
synonyms for the lexical units' senses.
/retrieve-batch/lexical-unit-collocations/ to get collocations.

To get corpus examples, use the separate /export API calls (and following pagination, as
above) rather than /retrieve-batch/ , for performance reasons:

/export/lexical-unit-sense-examples/ with "type"="single_lexeme_unit" for the single-
word lexical units.

https://blisk.ijs.si/api/redoc/#operation/retrieve_lexeme_create
https://blisk.ijs.si/api/redoc/#operation/get-or-create_lexeme_create
https://github.com/RSDO-DS3/SloInflector
https://ddd.cjvt.si/api/redoc/#tag/export/operation/export_lexical-units_create
https://ddd.cjvt.si/api/redoc/#tag/retrieve/operation/retrieve_lexical-unit-lexemes_create
https://ddd.cjvt.si/api/redoc/#tag/retrieve/operation/retrieve_lexical-unit-definitions_create
https://ddd.cjvt.si/api/redoc/#tag/retrieve/operation/retrieve_lexical-unit-sense-relations_create
https://ddd.cjvt.si/api/redoc/#tag/retrieve-batch/operation/retrieve-batch_lexical-unit-collocations_create
https://ddd.cjvt.si/api/redoc/#tag/export/operation/export_lexical-unit-sense-examples_create

/export/lexical-unit-sense-examples/ with "type"="collocation" for the collocations.

https://ddd.cjvt.si/api/redoc/#tag/export/operation/export_lexical-unit-sense-examples_create

