
Digital Dictionary
Database
A central database for Slovene.

Application domain and data model

Domain and data model links
Domain overview
Data model

REST API

API design
API routes
API implementation
API use cases

Application domain and data
model
Overview of the application domain and data model.

Application domain and data model

Domain and data model
links
Links with relevant resources:

Resource Version Date URL Notes

Top-level overview N/A various url Top level domain
overviews are spread
over various papers

Presentation N/A 28.09.2020 url Based on data model
v1.5; satellite
databases obsolete

Code repository N/A N/A url Python/Django
project; ask Simon
Krek for access

Data model v1.15 29.08.2022 png, mwb,
description

Database dump v3.25 15.11.2023 sql

https://wiki.cjvt.si/link/10
https://nas.cjvt.si/index.php/s/2wssgniJ4dx6tSE
https://gitea.cjvt.si/ddd/ddd_core/
https://nas.cjvt.si/index.php/s/C4a3CWzdTwcPNBq
https://nas.cjvt.si/index.php/s/kBzNpjgY5WrxsGd
https://wiki.cjvt.si/link/11
https://nas.cjvt.si/index.php/s/xo9QB8oQa8X8msn

Application domain and data model

Domain overview
Top level domain overviews are published in various papers.

These are some of the relevant papers (some may contain partially outdated data):

Slovar sodobne slovenščine: Problemi in rešitve
Oblikoslovne informacije v sodobnih slovarskih priročnikih
Leksikon besednih oblik Sloleks in smernice njegovega razvoja
Tehnološka izvedba sodobnega digitalnega slovarja
Leksikografski proces pri izdelavi spletnega slovarja sodobnega slovenskega jezika
Slovarski zgledi
Oznake: slovarska baza in slovar
Homonimija in večpomenskost: od teorije do slovarja
Specializirana leksika v splošnem slovarju
Uporabniške raziskave za potrebe slovenskega slovaropisja: prvi koraki
S pomočjo uporabniških jezikovnih vprašanj in mnenj do boljšega slovarja

Predstavitvena stran Slovarja sodobnega slovenskega jezika

https://e-knjige.ff.uni-lj.si/znanstvena-zalozba/catalog/book/15
https://www.cjvt.si/raziskovalno-delo/projekti-cjvt/slovar-sodobnega-slovenskega-jezika/

Application domain and data model

Data model
The central entity types of the datamodel are lexical units and senses. They connect the morpho-
syntactic and semantical data in the data model. In essence the model is designed to be a
multilingual model, however, currently it is used as a monolingual model that connects with
multilingual data (which does not have the same level of granularity) via special entity types.

On the top level the model can be divided into clusters (color-coded in the model):

lexical units (olive green)
senses (blue)
word forms (forest green)
syntactic structures (brown)
corpus examples (yellow)
sense translations (red)
sense frames (violet)
resource connections (orange)
generic features (grey)
entity types that reference other entity types via meta-attributes (white)

The corpus data is not contained in the database itself, but is referenced and accessed via a
concordancer. Some data (e.g., structure details) is defined in XML, which is used in existing
processing pipelines. This data is stored in a separate generic SQL table, but can be remodeled if
needed.

Contents
Overview

Purpose and state of this document
Database technology
Core model diagram

Model clusters
Lexical units
Senses
Word forms
Syntactic structures

https://wiki.cjvt.si/uploads/images/gallery/2022-12/jedro-v1-15.png

Corpus examples
Sense translations
Sense frames
Resource connections
Generic features
Other formats

Overview
Purpose and state of this document
This document is intended for technical users who are working with the DDD model and/or
backups. For a higher-level, more theoretical and more linguistic description of the data model, see
here (which is currently very brief, but will be expanded). For programmers who will also use the
DDD Django repository, see the README_code.md there (yet to be written, for now see
README_datamodel_old.md).

The document was written for DDD model v1.15 and in line with DDD backup v3.3.

Database technology
The Digital Dictionary Database is a PostgreSQL database. It contains core tables (with prefix
"jedro_"), metadata tables (with prefix "metadata_") and internal tables managed by Django and
other integrated packages (with prefixes "django_", "auth_", etc.). The core tables contain the
Slovene linguistic data, while the metadata tables refer to the core tables and contain data which
are not considered part of the language description, but which are needed for central applications
(e.g., longer names for dictionaries to display in the database editor).

We define and manage the database via the Django ORM. Partly for this reason, all tables have a
single rather than composite primary key (docs). Also, we make use of Django's content types and
generic relations (docs), which allow us to associate some simple extra data related to any table
without adding lots of new columns or many-to-many tables. However, this means that special care
needs to be taken with this data if using the database outside of Django.

Furthermore, for several reasons, some data is more naturally stored in other formats. However,
they are still technically part of the SQL database, so that all the data is in one place and so that
SQL transactions can encompass changes to this data. They are stored as whole strings in the
"extension" table. Currently we have only two such extensions, both in XML format, and we intend

https://wiki.cjvt.si/books/digital-dictionary-database/page/domain-overview
https://django.readthedocs.io/en/stable/faq/models.html#:~:text=Do%20Django%20models%20support%20multiple,column%20primary%20keys%20are%20supported
https://docs.djangoproject.com/en/4.1/ref/contrib/contenttypes/#generic-relations

to keep this to a minimum.

This readme focuses on the core data model, which is by far the most complex part of the
database.

Core model diagram
MySQL WorkBench diagrams are used to develop and visualise the core of the data model. The
project's main Django models.py file is (manually) kept in synch with diagram changes. The latest
(v1.15) version of the data model is available here.

The diagram contains several color-coded clusters of tables. For a conceptual explanation of the
domain, see here. This readme will provide a more technical explanation and interpretation of
these tables and the key relationships between them. Note that the tables with a relatively dark
colour shade in the diagram are just basic coding tables (with only id and name), so will not be
covered here explicitly, unless they are of particular importance. Also note that every table in this
model also has a last_modified timestamp column, but these are not included in the diagram to
avoid repetitive clutter.

Model clusters
Lexical units
The main lexical unit table (LexicalUnit) is the central table in the database. Lexical units consist of
a type (LexicalUnitType), a syntactic structure (SyntacticStructure) (ref), and one or more parts (
LexicalUnit_Part). They can also be related to each other (LexicalUnitRelation), and they can belong (
Lexicon_LexicalUnit) in different lexicons (Lexicon).

As (soon) explained here, there are five types of lexical unit, which fall under two broader
categories: independent (single_lexeme_unit , compound , phrase) and dependent (collocation ,
combination). For example, "miza" would be a single_lexeme_unit , "okrogla miza" a compound , and
"velika miza" a collocation . Independent types are potential headwords with their own entries in
dictionaries, while dependent units can be included in the entries of headword units. At the level of
the lexical unit tables, this difference is usually irrelevant, but as we will see, the types do impact
how associated data in some other tables are interpreted (e.g., senses, resources).

Lexical unit parts correspond roughly to tokens in corpora. Usually these are words, but not always
(the 2nd part of "francosko-slovenski slovar" may correspond to the punctuation character -). In
the data model, LexicalUnit_Part connects the lexical unit of the part (LexicalUnit), the component of
that unit's syntactic structure the part corresponds to (StructureComponent), and the form of the

https://nas.cjvt.si/index.php/s/C4a3CWzdTwcPNBq
https://wiki.cjvt.si/books/digital-dictionary-database/page/domain-overview
https://wiki.cjvt.si/books/digital-dictionary-database/lexical-unit-types

lexeme (FormEncoding) of that part. For instance, the first (of two) parts of "okrogla miza" connect
the lexical unit "okrogla miza" with the first component of the common adjective-noun syntactic
structure (ref) and the orthographic form of the appropriate form (feminine singular nominative) of
"okrogel" (ref).

A lexical unit is uniquely determined by its type, structure and sequence of parts. Therefore, we
cannot have multiple units which have the same combination of these properties, but we can have
multiple lexical units which only partially match. For example, we may have two units "švicarski
nož" (a compound and a phrase), or two noun single_lexeme_units for two forms of the same lexeme
("oblast" and "oblasti").

LexicalUnitRelations relate two lexical units with a particular relation type. The interpretation is that
for a given combination (from_lexical_unit , to_lexical_unit , type), to_lexical_unit is a type for
from_lexical_unit . If the relation is symmetric, it is stored twice, once in each direction. (These
conventions also apply for the other relation tables.)

Lexical units may belong to particular lexicons (Lexicon), identified with a particular name and
version (e.g., Sloleks 2.0). The inclusion is stored in Lexicon_LexicalUnit . However, so far we only
store these relations for one version of one lexicon, and it remains to be seen if we will add more.

Senses
While lexical units may be the most central unit in the data model, senses (Sense) are probably the
level to which the most data is attached. Lexical units have 1 or more senses, and each sense
belongs to a particular lexical unit. Senses can have definitions (Definition), they contain parts (
Sense_Part) and they can be related in various ways (SenseRelation). We can also store measures of
their occurrences in corpora (Sense_Measure). And if we don't know which of several senses is
appropriate for some data, we can group alternatives (SenseCandidate).

Each lexical unit has 1 or more senses with a particular (possibly null) position. However, their
interpretation depends on whether the lexical unit is dependent or independent (ref). For
independent lexical units, Senses with a non-null position are "real" senses, normally equipped with
further lexicographic data such as definitions or labels. The positions determine the order of a
lexical unit's senses, normally via lexicographers' explicit decisions. But every independent lexical
unit is also given a so-called "dummy" sense, which has null position and is used when we want to
associate sense-level data with a lexical unit, but we don't yet know under which sense (which is a
common situation because of the challenging nature of automatic semantic categorisation etc.). In
addition, if we know that some data corresponds to one of a particular proper subset of a lexical
unit's senses, we can also have a sense with null position and candidate pairings (SenseCandidate),
which relate particular senses (as candidate_sense) to that sense (potential_sense). However, this
sense candidate support has not yet been put to use.

In (lexicographic) theory, dependent lexical units do not have senses, as indeed the main reason
they are "dependent" is that their meanings derive somehow from the meanings of their parts

(compare "okrogla miza" and "velika miza"). But from a technical point of view, since many kinds of
data that are attached to senses (e.g., translations, examples, labels) are relevant for both
independent and dependent units, dependent lexical units do have senses as well. For dependent
lexical units, all senses have null positions (their ordering in particular contexts is determined by
calculable criteria), and we do not anticipate to need sense candidates. However, a dependent
lexical unit can still have multiple senses, such as the literal and figurative meanings of the
collocation "svinjski jezik" (which will will have different translations, for example). Different senses
of the same dependent lexical unit are distinguished by their parts (SensePart) and dependency
relations (SenseRelation) (see below).

Sense parts (SensePart) serve two functions, identified by two different types. within_other parts
indicate which lexical unit parts of a dependent unit correspond to the sense of a particular
independent unit. For instance, the compound "okrogla miza" ("miza") is found in the 2nd and 3rd
parts of the collocation "organizirati okroglo mizo". (The reason that sense parts refer to senses of
independent units rather than the lexical units themselves is to make it easier to handle example
tokens (ref).) within_self parts, on the other hand, allow us to indicate the role of the part in the
sense (which is null for within_other parts). The roles are defined, managed and assigned by
lexicographers. In within_self parts, we are always connecting lexical unit parts of a lexical unit with
that lexical unit's own sense, which is redundant, but it does simplify our data model as it prevents
the need for creation of two similar tables.

Sense relations (SenseRelation) relate pairs of senses with a certain relation type. Senses of two
independent lexical units can be related with classic semantic relations (e.g. synonym , relating a
particular sense of "mali" with a particular sense of "majhen"). There is also a special relation type
(dependency) which relates a dependent unit's sense (to_sense) with an independent unit's sense (
from_sense). For example, the literal sense of "svinjski jezik" can be related to the physical senses
of "svinjski" and "jezik", while its metaphorical sense can be related to more abstract senses of
"svinjski" and "jezik". We can also have a sense of "svinjski jezik" which is not related to any
independent unit senses, which would be the "dummy" sense for the dependent lexical unit.
Therefore, sense relations between senses of independent lexical units give additional information
about senses, while dependency sense relations help define a dependent sense.

Definitions are string descriptions of a sense. They are only used for independent lexical units, for
which they are the main aid in identifying senses for lexicographers and users. Definitions can be
of different types, among which indicator is the most common and important.

Sense measures (Sense_Measure) record basic statistical measure values for a sense in a particular
corpus. For instance, we would use this table to record that the physical sense of "svinjski jezik"
occurs in a particular corpus 157 times. If we are dealing with a corpus which has not been
semantically disambiguated, we can use the lexical unit's dummy sense (i.e., the position-less
sense of an independent unit or the relation-less sense of a dependent unit).

Word forms

Slovene is a highly inflectional language, where words have many forms with different sets of
features, so the data model includes a hierarchy of tables for morphological data. From top to
bottom, there are word grammatical categories (Category), form-independent lexemes of particular
categories (Lexeme), abstract combinations of particular form features for each lexeme (WordForm
), concrete forms for such combinations (FormRepresentation) and actual string representations of
those concrete forms (FormEncoding). Word forms have a hierarchy of form representations of
different types, encoded as relations (FormRepresentationRelation). We can also store basic form
representation corpus statistics (FormRepresentation_Measure), and classify form representations by
their paradigm patterns (FormRepresentation_Pattern). Finally, lexemes also have canonical form
representations for each type (Lemma_FormRepresentation).

Lexemes (Lexeme) represent a word (or punctuation) consisting of a lemma (the basic or dictionary
form of the word) (e.g., "miza"), a category (e.g, "noun", "preposition", "punctuation") and a set of
category-dependent lexeme-level MSD (see below) features (e.g., noun gender) (ref). This
combination almost uniquely determines a lexeme, so we can have two different lexemes with the
same lemma (e.g., "dolg"), or even with the same lemma and category (e.g., "klop"), but normally
not with the same lemma, category and lexeme-level MSD features. The exception is if we have
differences in non-orthographic form representations (e.g., lesen (accentuation="lesén") and
lesen(accentuation="lésen"), but these are few and handled specially for now.

For a given lexeme, word forms (WordForm) are in effect an abstract node for a particular
combination of category-dependent form-level features (e.g., adjective gender) (ref). For instance,
Slovene nouns typically have 18 word forms (6 cases x 3 numbers). The combination of a lexeme's
category, its lexeme-level features and a given word form's form-level features can be mapped to a
morphosyntactic description (MSD) for the word form, which lexicographers work with.

For each abstract word form, there is a hierarchy of form representations (FormRepresentation). We
currently have three different types of form representations: orthography (e.g., "dekan"),
accentuation (e.g., "dekàn") and pronunciation (e.g., "dɛˈkan"). Accentuation representations fall
under particular orthography representations, and pronunciation representations fall under
particular accentuation representations (e.g., "dɛˈkan" falls under "dekàn", not "dekán", although
they are all form representations corresponding to the MSD "Somei"). These inter-type
relationships are encoded as relations (FormRepresentationRelation). In case there are multiple
representations of the same type for a given form, norm_status can be used to indicate the
representation's relative status (e.g., "non-standard", "variant").

The actual string representations of form representations are stored as form encodings (
FormEncoding). This is a separate level, because there can be multiple encodings for the same
representation using different encoding scripts. For instance, pronunciations can be encoded using
SAMPA or IPA, and in some languages even orthographic forms are commonly written with different
scripts (e.g., Cyrillic and Latin for Serbian).

As for senses, we can store basic corpus statistics at the level of form representations (
FormRepresentation_Measure). For instance, this table can record that the single genitive variant
"Shakespeareja" of the masculine lexeme "Shakespeare" occurs 123 times in Gigafida 2.0.

https://nl.ijs.si/jos/msd/html-en/msd.index.msds.html

Also, form representations tend to follow certain paradigms (as typically described in grammar
books). These are managed by lexicographers and represented with pattern codes (FormPattern).
Individual form representations can then be assigned to particular patterns (
FormRepresentation_Pattern).

Finally, a lexeme's lemma can be explicitly associated with a subset of its form representations (
Lemma_FormRepresentation). This normally consists of all the form representations which fall under a
particular abstract word form, which is usually determined by the lexeme's category. For example,
for noun lexemes, this would be the representations falling under the singular nominative word
form. The lexeme's lemma should match one of the lexeme's orthography lemma representations.

Syntactic structures
Syntactic structures describe the structure of the canonical forms of lexical units. Each syntactic
structure (SyntacticStructure) defines a sequence of components (StructureComponent), their
properties, and dependencies between them. Structures can also be related to each other (
StructureRelation). Each lexical unit falls under a particular syntactic structure. However, most of the
details of syntactic structures are not stored in the SQL database, but rather in a related XML
extension file (static/extensions/structures.xml). There are several reasons for this (see wiki). The
format and contents of this XML extension will not be covered here.

Structures (SyntacticStructure) have only an id, which serves primarily to connect the SQL core and
XML extension. New lexical units are normally assigned to particular syntactic structures with a
dedicated pipeline. The pipeline uses a standard parser (CLASSLA) together with scripts which
match the lexical unit's sequence of parts to a syntactic structure, and creates a new XML structure
if necessary. Such new structures are then added to the SQL database separately.

While most of the details of syntactic structures are kept in the XML, we do also register the
components in SQL (StructureComponent). The main reason for this is so we can efficiently access
the position (index) of the component within the structure, which is relevant when working with
LexicalUnitParts (ref).

We can associate structures with each other as relations (StructureRelation). For instance,
lexicographers may want to explicitly relate two structures which are similar except that the verb is
reflexive in one structure but not in the other (e.g., consider lexical units "umivati roke" in "umivati
si roke").

Corpus examples
Senses of lexical units can be associated with corpus text to demonstrate real usage. Corpora (
Corpus) are registered in the database. Examples (Example) always come from a particular corpus
and are comprised of sentences (ExampleSentence). A single example can apply to different lexical
units in particular senses (Sense_Example), and we track the tokens of those lexical units within the

https://wiki.cjvt.si/books/digital-dictionary-database/???

examples (SenseExampleToken). Examples can be related to each other (ExampleRelation).

Corpora (Corpus) are external resources of parsed text or speech and identified with a name and
version (e.g., Gigafida 2.0).

Examples (Example) are a sequence of sentences from a corpus that have been chosen to
exemplify one or more lexical units. In most cases, they have only one sentence, but sometimes
consist of more, when more context is needed.

The sentences of an example (ExampleSentence) have an id internal to the corpus, and a position
within the example. With the use of an external API, the id can be used to fetch the structured
sentence from the corpus in TEI format.

Senses of lexical units can be associated with a particular example (Sense_Example). The same
example can be used for different lexical units (e.g., "Organiziral je okroglo mizo." could be an
example for senses of "organizirati", "okrogla miza", "organizirati okroglo mizo", etc.).

We also track which tokens of an example represent the lexical unit (SenseExampleToken), which is
useful when visualising examples, such as marking the lexical unit in bold. For instance, if
"Organiziral je okroglo mizo." is used as an example for "okrogla miza", then in this table we would
note positions 3 and 4. However, for dependent lexical units (ref), we may also want to
differentiate between one of its independent lexical units and the rest. For instance, if "Organiziral
je okroglo mizo." is used as an example of "organizirati okroglo mizo" and we are considering it as
a collocation for "okrogla miza", then we might want to put, say, "okroglo mizo" in bold and
"organizirati" in italic. For this reason, the table also includes a SensePart (ref): if the SensePart is of
type within_other , then we can use it to make this distinction.

Sense translations
The data model supports storage of translations from Slovene to other languages (Language) for
senses (Sense) and examples (Sense_Example) and may be in the form of an ordinary translation (
Translation) and/or explanation (Explanation). If the translations come from external sources (
ExternalSource), such as monolingual dictionaries of other languages, they can be associated with
translations (Translation_ExternalSource) along with an external id.

Since translations are used for both senses and examples, a more abstract table is also used (
Translation). A translation may be empty, in which case it should have at least one associated
explanation.

Explanations (Explanation) are alteratives to translations, and are normally a longer description.
They do not need to be in the same language as the Translation (this may depend, for example, on
the target users).

Translations are stored for senses (Sense_Translation) and examples (SenseExample_Translation). Note
that translations are not symmetric. For senses, the translation will be analogous to the string of a
lexical unit in the other language (and not a particular sense of that unit). For examples, the text of
the translation is stored directly in the database and the lexical unit is not marked (ref).

Sense frames
Frames provide a formal description of a verb's semantic arguments. Frames (Frame) have
components (FrameComponent). The same abstract frame can be used by senses of different verbs (
Sense_Frame), for which components may have specific subroles (SenseFrame_Component). As this
part of the data model has not yet been used, it may well undergo further development.

In the model, frames (Frame) themselves are abstract elements with only ids. In addition to
providing foreign keys for related tables, these ids will also be used in a new xml extension for
semantic frames (analogous to ref).

Each frame has a set of frame components (FrameComponent). The components are of different
types corresponding to semantic roles (e.g., agent, experiencer, goal).

Senses of independent lexical units can be assigned to particular frames (Sense_Frame). For
example, a sense of dati might be associated with a frame which has an agent component for the
giver, a patient component for the object given and a recipient component for the recipient.

For particular verbs, frame components take on more specific roles than prescribed by their
component type (SenseFrame_Component). For instance, while agent components may generally
include any kind of animate objects, a verb like "plavati" is restricted to humans and animals.

Resource connections
In addition to storing lexical units and their diverse associated data, the data model also supports
the means to group (roughly speaking) subsets of this data for particular purposes (e.g., a Slovene-
Hungarian dictionary portal) and assign them statuses in that context. There are registry tables for
resources (Resource) and statuses (Status), and we can assign headword lexical units to resources
(LexicalUnit_Status) for valid combinations (Resource_Status), as well as specifying relevant
translation languages (Resource_Language). We can also specify if certain data under headwords
should be included in a resource and with what status (ResourceRelevance).

The resource table (Resource) just registers resources with a short name or acronym (e.g., "VSMS"
for the Slovene-Hungarian dictionary). Each resource is typically associated with a relatively large
project or particular perspective on the database (model and/or data), and lexicographers may
want various imports or exports specific to that resource. There will often also be a particular portal
for a particular resource (VSMS), for which a simplified resource-specific database is normally
generated from the central database. If a resource is a bilingual or multilingual dictionary, then it is

https://viri.cjvt.si/slovensko-madzarski/slv/

assumed that the source language is Slovene, and the target translation languages are explicitly
stored (Resource_Language) (e.g., Hungarian and Serbian for a dictionary resource with translations
of Slovene units in Hungarian and Serbian).

The status table (Status) registers the global set of string statuses that are potentially available to
use for resource headwords (e.g., "manually-checked"). The actual statuses available for a
particular resource are then a subset of that (Resource_Status).

Independent lexical units can be "included" in a resource by assigning them a status of that
resource (LexicalUnit_Status). Doing so effectively makes them headwords for the resource. For
instance, if "miza" is assigned a particular status (e.g., "automatic") associated with the Sloleks
resource, then lexicographers will expect that "miza" will be a headword in the (generated) Sloleks
portal, perhaps marked in a particular way to signal that particular status. Note that dependent
lexical units cannot be assigned to a resource in this way, because by definition they cannot be
headwords but rather fall under them.

In order to specify if and how data subordinate to headwords should be included for particular
resources, a special Django feature is used (generic relations, which allows us to have one table (
ResourceRelevance), rather than a separate one for each type of subordinate data, to specify
resource relevance. The content type (content_type_id) identifies the appropriate table and the
object's id (object_id) specifies its id within that table. Since some types of objects (e.g., dependent
lexical units) could fall under different headwords, headword_id is used to explicitly specify the
headword (e.g., we may want to include the collocation "velika miza" under "miza" but not under
"velik" for a particular resource). The inclusion_id and status_id columns specify whether the data
should be included and with with what status, respectively.

However, in order to avoid the need for exhaustively adding and updating a ResourceRelevance row
for every single piece of subordinate data under every single headword in every single resource, a
set of agreed upon rules and defaults is applied. First, only specific preestablished kinds of data
can be selectively included in resources - at present these are headword senses, dependent unit
senses (which in practice means collocations and combinations), and sense examples. Second, the
default is that headword senses are included (ResourceRelevanceInclusion : include), while dependent
unit senses and sense examples are excluded (ResourceRelevanceInclusion : exclude). Third, it is
assumed that a default status is defined for each resource (note that these statuses are different
than the headword-levels ones in Resource_Status). Under these assumptions, resource relevances
only need to be defined for data if it is of one of the specified types, and its inclusion and/or status
are not the defaults. If the columns contain null or the default for both columns, then it is the same
(in the business logic) as if the row is not included.

Generic features
In order to enable associating objects with particular features without promoting them to columns
in their tables (which may or may not be relevant for all objects in the table), the data model also
provides some tables for more generic purposes. Features (Feature) can be defined which take on
a set of values (FeatureValue) and are grouped into categories (FeatureCategory). Values can be

https://docs.djangoproject.com/en/4.0/ref/contrib/contenttypes/#generic-relations

associated with objects (Object_Feature) and enter into relations (FeatureValueRelation). Playing a
technically separate but conceptually similar function to features, the Measure table registers
statistical measures for data.

Every feature (Feature) has a name and belongs to a category (FeatureCategory), the combination of
which must be unique. Feature categories serve to group related features. In practice, we've used
categories with names that match the table that they are used with (e.g., sense_translation for
features which are only used with Sense_Translations), or the generic category general if a feature is
used with objects from multiple tables.

Feature values (FeatureValue) list all the allowed values (as strings) of a feature. The model does
not distinguish between theoretically close-ended features (e.g., "gender") and open-ended
features (e.g., "latin_name"); for the latter, extra feature values are just created as needed.

While features with their values are ultimately more or less equivalent to basic name-value pairs,
they can also be related to each other if needed. A particular case of this is with labels, where there
are two hierarchies of features: label_type and label_value . For instance, the label_type feature has a
value "domain", which is related to a subset of the label_value feature (e.g., "zgodovina", "kemija",
"organska kemija"), and these values have hierarchical relations (e.g., "kemija" -> "organska
kemija").

Using the same Django generic relations as ResourceRelevance (ref), objects of any table in the core
data model can then be associated with one or more values of one or more features (Object_Feature
). This is enabled with a combination of two columns: content_type_id and object_id . content_type_id
refers to django's django_content_type table, where ids (id) are associated with table names (model
), while the object_id column specifies the id in that table. For example, if an Object_Feature has
content_type_id=18 and object_id=71, and the django_content_type table has model="sense" for
id=18, then the Object_Feature applies for the Sense with id=71. Note that an object can also have
multiple feature values, even (though rare) for the same feature.

Finally, there is a separate registry table of measures (Measure), which can be used to record basic
statistical information for different kinds of data in particular corpora. For now, the model enables
this for senses (Sense_Measure) and form representations (FormRepresentation_Measure).

Other formats
A special table (Extension) is used for data in other formats. The columns specify a unique name ,
format (currently only XML is used), string with the string representation of the data, and hash for
that string representation. For example, one row in our current database contains the details of the
definitions of all syntactic structures, with @id attributes in synch with SyntacticStructure ids. The
hashes are derived using SHA512, which allows for more efficient checks if data has changed.

These extensions allow for more flexibility in data representation and prevent a proliferation of
special-purpose tables and columns, but we try to keep them to a minimum so that the vast
majority of the database can be queried and manipulated via standard Django and SQL operations.

REST API
Public REST API for accessing the database.

REST API

API design
Principles of the API design:

1. All documented routes should be appended to https://blisk.ijs.si/api/.
2. All the routes are available as POST calls, even if they do not result in changes in the

database, because:
some routes will have non-trivial input parameters (structured data, arbitrary
strings), which are difficult and clunky to encode as path parameters, and expecting
request body parameters in GET calls can be problematic and misleading
we can have short clear URLS for all routes, and there are limits on URL length in
some contexts.

3. Some routes also have a GET counterpart, which behave the same way as the POST call
but do not allow for response body parameters (default values are used instead).

4. All request parameters are provided as JSON request body parameters, except for the
object's id, which is used to identify a given object and provided as an obligatory path
parameter for certain types of calls (e.g., retrieve).

5. The following HTTP response codes are used:
200: for most successful requests
201: for successful get-or-create requests where no matching object was found and
a new one was created
400: an error occurred due to invalid or unexpected request parameters or
combinations
401: authorisation denied (suitable credentials are needed for routes which write to
the database)
404: objects were not found for the value (usually id) provided
501: the specifications for this route are designed but it has not yet been
implemented

6. Each route falls under a particular type of operation identified with a particular verb as the
first part of the route. The verbs include:

retrieve: return data for a given object
search: return all the objects which match the set of search parameters
get-or-create: get the object matching the parameters provided, creating one if
necessary, along with any other missing objects it depends on
update: update the properties of a given object based on the parameters provided
delete: delete a given object
attach: attach the given object to a particular resource, if not yet attached
detach: detach the given object from a particular resource, if attached
process: process the input data with an appropriate independent tool (e.g., the
CLASSLA NLP library)

7. If the operation verb has a "-batch" suffix, it differs from its non-batch counterpart as
follows:

users can make 1 API call instead of N API calls for N items
the input data should be a list, with each element in the format expected by the non-
batch route
the output data is a list, with each element corresponding to the element at the
same position in the input, where each element has three fields:

status: the HTTP response code that would be used if the element was
processed in a non-batch call
message: a message describing the results of the operation (e.g., whether an
object was found or created, or the cause of the warning or error)
data: the output data (for successful calls), in the same format as non-batch
output

8. Routes which do not change data in the database (retrieve, search, process) are publicly
available. Routes which may result in changes in the database (get-or-create, update,
delete, attach, detach) require authentication credentials.

REST API

API routes
The API is being designed and developed, with priority on current needs. Specifications are
available in redoc (which is better formatted visually) and swagger (which allows you to try the API
via the interface).

Here is a list of the current routes (last update: 06.12.2022). All routes are available with POST,
while some of them also have GET or batch POST alternatives (ref). The routes that are not read-
only have restricted access.

Route Read-only Description

/search/lexical-unit/ yes search for lexical units based on their
properties and parts

/retrieve/lexical-unit/ yes get a lexical unit's basic data

/get-or-create/lexical-unit/ no get or create a lexical unit based on
properties and components

/search/lexeme/ yes search for lexemes

/retrieve/lexeme/ yes get a lexeme's data

/get-or-create/lexeme/ no get or create a lexeme based on
defining properties

/retrieve/lexical-unit-lexemes/ yes get the lexical unit's component
lexemes

/search/category/ yes search for a lexeme's category (part
of speech) by string

/search/form/ yes search for word forms by string

/search/sense/ yes search for senses

/retrieve/lexical-unit-senses/ yes get the senses of a lexical unit

/retrieve/lexical-unit-sense-relations/ yes get the sense relations of a lexical
unit's senses

/retrieve/lexical-unit-collocations/ yes get the collocations of a lexical unit

/retrieve/lexical-unit-translations/ yes get the translations of a lexical unit

/retrieve/lexical-unit-sense-examples/ yes get corpus examples for the senses of
a lexical unit

https://blisk.ijs.si/api/redoc
https://blisk.ijs.si/api/swagger
https://wiki.cjvt.si/books/digital-dictionary-database/page/api-design
https://blisk.ijs.si/api/redoc/#operation/search_lexical-unit_create
https://blisk.ijs.si/api/redoc/#operation/retrieve_lexical-unit_create
hhttps://blisk.ijs.si/api/redoc/#operation/get-or-create_lexical-unit_create
https://blisk.ijs.si/api/redoc/#operation/search_lexeme_create
https://blisk.ijs.si/api/redoc/#operation/retrieve_lexeme_create
https://blisk.ijs.si/api/redoc/#operation/get-or-create_lexeme_create
https://blisk.ijs.si/api/redoc/#operation/retrieve_lexical-unit-lexemes_create
https://blisk.ijs.si/api/redoc/#operation/search_category_create
https://blisk.ijs.si/api/redoc/#operation/search_form_create
https://blisk.ijs.si/api/redoc/#operation/search_sense_create
https://blisk.ijs.si/api/redoc/#operation/retrieve_lexical-unit-senses_create
https://blisk.ijs.si/api/redoc/#operation/retrieve_lexical-unit-sense-relations_create
https://blisk.ijs.si/api/redoc/#operation/retrieve_lexical-unit-collocations_create
https://blisk.ijs.si/api/redoc/#operation/retrieve_lexical-unit-translations_create
https://blisk.ijs.si/api/redoc/#operation/retrieve_lexical-unit-sense-examples_create

Route Read-only Description

/get-or-create/resource/ no get or create a dictionary or other
resource

/search/resource/ yes search or list resources available

/attach/lexical-unit/ no attach a lexical unit to a resource

/detach/lexical-unit/ no detach a lexical unit from a resource

/search/syntactic-structure/ yes get the XML definitions of syntactic
structures

/process/string-to-tokens/ yes parse a Slovene string to get a list of
tokens

https://blisk.ijs.si/api/redoc/#operation/get-or-create_resource_create
https://blisk.ijs.si/api/redoc/#operation/search_resource_create
https://blisk.ijs.si/api/redoc/#operation/attach_lexical-unit_create
https://blisk.ijs.si/api/redoc/#operation/detach_lexical-unit_create
https://blisk.ijs.si/api/redoc/#operation/search_syntactic-structure_create
https://blisk.ijs.si/api/redoc/#operation/process_string-to-tokens_create

REST API

API implementation
The public API is being implemented using the Django REST Framework and APIViews in particular.
It is part of the Python codebase, Django project and Git repository that is used to manage the
database in general. We are striving to keep the business logic and API route definitions in
separate modules, so that different APIs (e.g., editor API, internal API) can use the same utils
module.

Most of the logic and processing of the API is internal. However, there are a few aspects that rely
on other tools, such as Slovene string parsing and fetching of corpus examples.

https://www.django-rest-framework.org/
https://www.django-rest-framework.org/api-guide/views/

REST API

API use cases
In addition to providing general public access to the database, the REST API can also be used to
integrate data and services with external organisations in a coordinated, structured and systematic
way. Two current examples of this are integration with terminology portals and speech
technologies, both of which use a mix of public (read-only) and restricted (read-write) routes of the
API.

Terminology Portal
One of the main parts of the Development of Slovene in a Digital Environment is a terminology
portal that will feature various terminological resources and offer an openly accessible tool for term
extraction from specialized corpora, as well as the server infrastructure needed to create new
terminological resources. The main components of the portal include a search engine for all
integrated resources and a terminology resource editor, and the resources are designed to be
easily integrated with other language tools and services, including the Digital Dictionary Database.

As such, the portal uses API routes to register its dictionaries in the database, search and create
terms, attach/detach them to/from the dictionaries, and fetch their forms and statuses. The API
supports this as follows (see the route links for full examples):

Register the dictionary as a resource in the database using /get-or-create/resource/,
providing a code name for the dictionary (e.g., "slm") as input. The API will return the
resource's ID (e.g., 87), first creating it if it does not yet exist.
Get IDs of terms in the database, creating them if necessary, using /get-or-create/lexical-
unit/. Input can be either the term's raw string (e.g., "okrogla miza"), or its pre-analysed
sequence of tokens, with each token represented with corpus-style data (e.g.,
[{"lemma":"okrogel", "msd":"Ppnzei", "form":"okrogel"}, {"lemma":"miza", "msd":"Sozei", "form":"miza"}]
). If a raw string is provided, the API uses a standard tool to get a sequence of tokens
itself. Either way, it then checks if a matching lexical unit exists in the database, creates
one if necessary, and returns its basic data, including its ID (e.g., 54321). If many terms
need processing, this can be done by using the /get-or-create-batch/lexical-unit/ call
instead and providing a list of inputs.
Get the word parts and their forms with statuses for a specific term, by using
/retrieve/lexical-unit-lexemes/. Input would be the term's ID (e.g., 54321) and specifying
that form statuses and all form types are also requested (e.g., "extra-data":["status-form-
types", "forms-orthography", "forms-accentuation", "forms-pronunciation"]). The output then a list,
with each element is one of the term's word constituents, represented with both its basic

https://www.slovenscina.eu/
https://blisk.ijs.si/api/redoc/#operation/get-or-create_resource_create
https://blisk.ijs.si/api/redoc/#operation/get-or-create_lexical-unit_create
https://blisk.ijs.si/api/redoc/#operation/get-or-create_lexical-unit_create
https://blisk.ijs.si/api/redoc/#operation/get-or-create-batch_lexical-unit_create
https://blisk.ijs.si/api/redoc/#operation/retrieve_lexical-unit-lexemes_create

data (such as id, lemma, part of speech, basic word-level features) and the extra
requested data (the list of all the forms of all the types for the word and aggregated
statuses for each type).
Search for term candidates in the datases, using /search/lexical-unit/. This has similarities
to /get-or-create/lexical-unit but differs in a few key ways. First, it does not create a lexical
unit if no match exists, and thus does not require authentification, so less central
components of the portal can also make use of it. Second, it does not require complete
data in the input (e.g., perhaps only one or two of lemma/msd/form are specified for one
or more of the term's components), making the search more flexible and potentially
returning multiple matches (e.g., {"lemma":"klop"}).
Attach the lexical unit to a resource, using /attach/lexical-unit/. The input would be the IDs
of the term as a lexical unit (e.g., 54321) and dictionary as a resource (e.g., 87). This
would then connect the two in the database.
Detach the lexical unit from a resource, using /detach/lexical-
unit/(https://blisk.ijs.si/api/redoc/#tag/detach). The input would be the IDs of the term as a
lexical unit (e.g., 54321) and dictionary as a resource (e.g., 87). This would then remove
the term from the resource in the database, without deleting the term from the database
in general.

Speech technologies
The project Tolmač (Eng. Interpreter) is focused on developing of a system for automatically
translating lectures from Slovene to other languages, coordinated at the Faculty of Computer and
Information Science at the University of Ljubljana, in close collaboration with the Centre for
Language Resources and Technologies. The results of the project will be important for a wide range
of people: real-time translations will make it easier for foreign students to follow lectures in
Slovene, automatic subtitles will help people will hearing loss, and lecture excerpts and recordings
will be accessible at a dedicated website. The speech technologies underlying the system rely on
search and retrieval of both orthographic and pronunciation word forms of Slovene words.

To that end, the system can use API routes to preprocess text, search for different kinds of word
forms, retrieve the forms of word and create new words along with their forms. The API supports
this as follows:

Parse a piece of Slovene text to get a sequence of tokens using /process-string-to-tokens.
The API runs the standard CLASSLA parser with default parameters and returns a list of
tokens in CoNLL-U format, with each token including a lemma (e.g., "miza"), MSD (
"Sozmm") and form (e.g., "mizah"). Thus this API call does not interact with the database,
but serves as a handy wrapper for CLASSLA, so the user does not need to install it
themselves.
Search for a word form in the database using /search/form/, by providing a type (e.g.,
"orthography") and a string (e.g., "mizah"). The output is a list of matching forms, along
with basic associated data such as lexeme ID (e.g., 123), lemma (e.g., "miza") and JOS-
system MSD (e.g., "Sozdm"). Associated pronunciations for all matching forms are

https://blisk.ijs.si/api/redoc/#operation/search_lexical-unit_create
https://blisk.ijs.si/api/redoc/#tag/attach
https://www.cjvt.si/en/infrastructure-support/tolmac/
https://blisk.ijs.si/api/redoc/#tag/process
https://github.com/clarinsi/classla
https://blisk.ijs.si/api/redoc/#operation/search_form_create

included if requested (e.g., "extra-data":["forms-pronunciation"]).
Get all the forms of a given lexeme using /retrieve/lexeme/, using the lexeme's ID as
input. To get all the orthography and pronunciation forms of the lexeme, specify in the
input (e.g., "extra-data":["forms-orthography", "forms-pronunciation"]).
Create (if it does not yet exist) a lexeme in the database using /get-or-create/lexeme/.
Input consists of a lemma (e.g., "miza") and MSD (e.g., "Sozmm"). The MSD can be any
appropriate MSD for the lexeme, not necessarily the MSD of the lemma itself, since only
the lexeme-level parts of the lemma (e.g., "Soz") will be considered. The API calls the
Inflector tool, which generates full paradigms of different kinds of forms (orthography,
accentuation, pronunciation), and then saves the new lexeme with its forms in the
database. However, if a lexeme already exists in the database which matches the
database, no duplicate lexeme (along with forms) is created and the existing lexeme is
returned.

https://blisk.ijs.si/api/redoc/#operation/retrieve_lexeme_create
https://blisk.ijs.si/api/redoc/#operation/get-or-create_lexeme_create
https://github.com/RSDO-DS3/SloInflector

