
API use cases
In addition to providing general public access to the database, the REST API can also be used to
integrate data and services with external organisations in a coordinated, structured and systematic
way. Two current examples of this are integration with terminology portals and speech
technologies, both of which use a mix of public (read-only) and restricted (read-write) routes of the
API.

Povejmo
One of the goals of the project is to enable a large language model to learn Slovene grammar. The
training dataset will be largely based on data obtained from the Digital Dictionary Database, and
the goal is to extract and incorporate as much data as possible, so that the model can also learn
specific nuances.

To that end, the API's various /export and /retrieve-batch routes are particularly relevant, as they
enable first finding all the relevant (single-word or multi-word) unit IDs and then different kinds of
data for all the words. For example:

Find the IDs of the first chunk of single-word lexical units in the database, using
/export/lexical-units/ with "type"="single_lexeme_unit" .
Accumulate all the IDs by repeatedly following the "next" links until next=null.
Break the lexical unit IDs into batches that can be used in /retrieve-batch calls.
For each batch of lexical unit IDs, retrieve associated data using:

/retrieve-batch/lexical-unit-lexemes/ with "extra-data"=["forms-orthography"] to get each
lexical unit's lexeme along with all of its morphological forms.
/retrieve-batch/lexical-unit-definitions/ to get all definitions of different kinds for the
lexical units' senses.
/retrieve-batch/lexical-unit-sense-relations/ with "type"="synonym" to get all the
synonyms for the lexical units' senses.
/retrieve-batch/lexical-unit-collocations/ to get collocations.

To get corpus examples, use the separate /export API calls (and following pagination, as
above) rather than /retrieve-batch/ , for performance reasons:

/export/lexical-unit-sense-examples/ with "type"="single_lexeme_unit" for the single-
word lexical units.
/export/lexical-unit-sense-examples/ with "type"="collocation" for the collocations.

https://ddd.cjvt.si/api/redoc/#tag/export/operation/export_lexical-units_create
https://ddd.cjvt.si/api/redoc/#tag/retrieve/operation/retrieve_lexical-unit-lexemes_create
https://ddd.cjvt.si/api/redoc/#tag/retrieve/operation/retrieve_lexical-unit-definitions_create
https://ddd.cjvt.si/api/redoc/#tag/retrieve/operation/retrieve_lexical-unit-sense-relations_create
https://ddd.cjvt.si/api/redoc/#tag/retrieve-batch/operation/retrieve-batch_lexical-unit-collocations_create
https://ddd.cjvt.si/api/redoc/#tag/export/operation/export_lexical-unit-sense-examples_create
https://ddd.cjvt.si/api/redoc/#tag/export/operation/export_lexical-unit-sense-examples_create

Terminology Portal
One of the main parts of the Development of Slovene in a Digital Environment is a terminology
portal that will feature various terminological resources and offer an openly accessible tool for term
extraction from specialized corpora, as well as the server infrastructure needed to create new
terminological resources. The main components of the portal include a search engine for all
integrated resources and a terminology resource editor, and the resources are designed to be
easily integrated with other language tools and services, including the Digital Dictionary Database.

As such, the portal uses API routes to register its dictionaries in the database, search and create
terms, attach/detach them to/from the dictionaries, and fetch their forms and statuses. The API
supports this as follows (see the route links for full examples):

Register the dictionary as a resource in the database using /get-or-create/resource/,
providing a code name for the dictionary (e.g., "slm") as input. The API will return the
resource's ID (e.g., 87), first creating it if it does not yet exist.
Get IDs of terms in the database, creating them if necessary, using /get-or-create/lexical-
unit/. Input can be either the term's raw string (e.g., "okrogla miza"), or its pre-analysed
sequence of tokens, with each token represented with corpus-style data (e.g.,
[{"lemma":"okrogel", "msd":"Ppnzei", "form":"okrogel"}, {"lemma":"miza", "msd":"Sozei", "form":"miza"}]
). If a raw string is provided, the API uses a standard tool to get a sequence of tokens
itself. Either way, it then checks if a matching lexical unit exists in the database, creates
one if necessary, and returns its basic data, including its ID (e.g., 54321). If many terms
need processing, this can be done by using the /get-or-create-batch/lexical-unit/ call
instead and providing a list of inputs.
Get the word parts and their forms with statuses for a specific term, by using
/retrieve/lexical-unit-lexemes/. Input would be the term's ID (e.g., 54321) and specifying
that form statuses and all form types are also requested (e.g., "extra-data":["status-form-
types", "forms-orthography", "forms-accentuation", "forms-pronunciation"]). The output then a list,
with each element is one of the term's word constituents, represented with both its basic
data (such as id, lemma, part of speech, basic word-level features) and the extra
requested data (the list of all the forms of all the types for the word and aggregated
statuses for each type).
Search for term candidates in the datases, using /search/lexical-unit/. This has similarities
to /get-or-create/lexical-unit but differs in a few key ways. First, it does not create a lexical
unit if no match exists, and thus does not require authentification, so less central
components of the portal can also make use of it. Second, it does not require complete
data in the input (e.g., perhaps only one or two of lemma/msd/form are specified for one
or more of the term's components), making the search more flexible and potentially
returning multiple matches (e.g., {"lemma":"klop"}).
Attach the lexical unit to a resource, using /attach/lexical-unit/. The input would be the IDs
of the term as a lexical unit (e.g., 54321) and dictionary as a resource (e.g., 87). This

https://www.slovenscina.eu/
https://blisk.ijs.si/api/redoc/#operation/get-or-create_resource_create
https://blisk.ijs.si/api/redoc/#operation/get-or-create_lexical-unit_create
https://blisk.ijs.si/api/redoc/#operation/get-or-create_lexical-unit_create
https://blisk.ijs.si/api/redoc/#operation/get-or-create-batch_lexical-unit_create
https://blisk.ijs.si/api/redoc/#operation/retrieve_lexical-unit-lexemes_create
https://blisk.ijs.si/api/redoc/#operation/search_lexical-unit_create
https://blisk.ijs.si/api/redoc/#tag/attach

would then connect the two in the database.
Detach the lexical unit from a resource, using /detach/lexical-
unit/(https://blisk.ijs.si/api/redoc/#tag/detach). The input would be the IDs of the term as a
lexical unit (e.g., 54321) and dictionary as a resource (e.g., 87). This would then remove
the term from the resource in the database, without deleting the term from the database
in general.

Speech technologies
The project Tolmač (Eng. Interpreter) is focused on developing of a system for automatically
translating lectures from Slovene to other languages, coordinated at the Faculty of Computer and
Information Science at the University of Ljubljana, in close collaboration with the Centre for
Language Resources and Technologies. The results of the project will be important for a wide range
of people: real-time translations will make it easier for foreign students to follow lectures in
Slovene, automatic subtitles will help people will hearing loss, and lecture excerpts and recordings
will be accessible at a dedicated website. The speech technologies underlying the system rely on
search and retrieval of both orthographic and pronunciation word forms of Slovene words.

To that end, the system can use API routes to preprocess text, search for different kinds of word
forms, retrieve the forms of word and create new words along with their forms. The API supports
this as follows:

Parse a piece of Slovene text to get a sequence of tokens using /process-string-to-tokens.
The API runs the standard CLASSLA parser with default parameters and returns a list of
tokens in CoNLL-U format, with each token including a lemma (e.g., "miza"), MSD (
"Sozmm") and form (e.g., "mizah"). Thus this API call does not interact with the database,
but serves as a handy wrapper for CLASSLA, so the user does not need to install it
themselves.
Search for a word form in the database using /search/form/, by providing a type (e.g.,
"orthography") and a string (e.g., "mizah"). The output is a list of matching forms, along
with basic associated data such as lexeme ID (e.g., 123), lemma (e.g., "miza") and JOS-
system MSD (e.g., "Sozdm"). Associated pronunciations for all matching forms are
included if requested (e.g., "extra-data":["forms-pronunciation"]).
Get all the forms of a given lexeme using /retrieve/lexeme/, using the lexeme's ID as
input. To get all the orthography and pronunciation forms of the lexeme, specify in the
input (e.g., "extra-data":["forms-orthography", "forms-pronunciation"]).
Create (if it does not yet exist) a lexeme in the database using /get-or-create/lexeme/.
Input consists of a lemma (e.g., "miza") and MSD (e.g., "Sozmm"). The MSD can be any
appropriate MSD for the lexeme, not necessarily the MSD of the lemma itself, since only
the lexeme-level parts of the lemma (e.g., "Soz") will be considered. The API calls the
Inflector tool, which generates full paradigms of different kinds of forms (orthography,
accentuation, pronunciation), and then saves the new lexeme with its forms in the
database. However, if a lexeme already exists in the database which matches the

https://www.cjvt.si/en/infrastructure-support/tolmac/
https://blisk.ijs.si/api/redoc/#tag/process
https://github.com/clarinsi/classla
https://blisk.ijs.si/api/redoc/#operation/search_form_create
https://blisk.ijs.si/api/redoc/#operation/retrieve_lexeme_create
https://blisk.ijs.si/api/redoc/#operation/get-or-create_lexeme_create
https://github.com/RSDO-DS3/SloInflector

database, no duplicate lexeme (along with forms) is created and the existing lexeme is
returned.

Revision #8
Created 2 December 2022 14:29:19 by Cyprian Laskowski
Updated 4 April 2025 08:17:16 by Cyprian Laskowski

